Tests of Divisibility
Divisibility is used in mathematics to determine if a certain number is going to be able to be divided into another number evenly and without leaving a remainder.1. Divisibility By 2 : A number is divisible by 2, if its unit’s digit is any of 0, 2, 4, 6, 8.
Ex. 84932 is divisible by 2, while 65935 is not.
Ex. 84932 is divisible by 2, while 65935 is not.
2. Divisibility By 3 : A number is divisible by 3, if the sum of its digits is divisible by 3.
Ex.592482 is divisible by 3, since sum of its digits = (5 + 9 + 2 + 4 + 8 + 2) = 30, which
is divisible by 3.
But, 864329 is not divisible by 3, since sum of its digits =(8 + 6 + 4 + 3 + 2 + 9) = 32,
which is not divisible by 3.
Ex.592482 is divisible by 3, since sum of its digits = (5 + 9 + 2 + 4 + 8 + 2) = 30, which
is divisible by 3.
But, 864329 is not divisible by 3, since sum of its digits =(8 + 6 + 4 + 3 + 2 + 9) = 32,
which is not divisible by 3.
3. Divisibility By 4 : A number is divisible by 4, if the number formed by the last two
digits is divisible by 4.
Ex. 892648 is divisible by 4, since the number formed by the last two digits is
48, which is divisible by 4.
But, 749282 is not divisible by 4, since the number formed by the last tv/o digits is 82,
which is not divisible by 4.
4. Divisibility By 5 : A number is divisible by 5, if its unit’s digit is either 0 or 5. Thus,
20820 and 50345 are divisible by 5, while 30934 and 40946 are not.
digits is divisible by 4.
Ex. 892648 is divisible by 4, since the number formed by the last two digits is
48, which is divisible by 4.
But, 749282 is not divisible by 4, since the number formed by the last tv/o digits is 82,
which is not divisible by 4.
4. Divisibility By 5 : A number is divisible by 5, if its unit’s digit is either 0 or 5. Thus,
20820 and 50345 are divisible by 5, while 30934 and 40946 are not.
5. Divisibility By 6 : A number is divisible by 6, if it is divisible by both 2 and 3. Ex.
The number 35256 is clearly divisible by 2.
Sum of its digits = (3 + 5 + 2 + 5 + 6) = 21, which is divisible by 3. Thus, 35256 is
divisible by 2 as well as 3. Hence, 35256 is divisible by 6.
The number 35256 is clearly divisible by 2.
Sum of its digits = (3 + 5 + 2 + 5 + 6) = 21, which is divisible by 3. Thus, 35256 is
divisible by 2 as well as 3. Hence, 35256 is divisible by 6.
6. Divisibility By 8 : A number is divisible by 8, if the number formed by the last
three digits of the given number is divisible by 8.
Ex. 953360 is divisible by 8, since the number formed by last three digits is 360, which is
divisible by 8.
But, 529418 is not divisible by 8, since the number formed by last three digits is 418,
which is not divisible by 8.
three digits of the given number is divisible by 8.
Ex. 953360 is divisible by 8, since the number formed by last three digits is 360, which is
divisible by 8.
But, 529418 is not divisible by 8, since the number formed by last three digits is 418,
which is not divisible by 8.
7. Divisibility By 9 : A number is divisible by 9, if the sum of its digits is divisible
Ex. 60732 is divisible by 9, since sum of digits * (6 + 0 + 7 + 3 + 2) = 18, which is
divisible by 9.
But, 68956 is not divisible by 9, since sum of digits = (6 + 8 + 9 + 5 + 6) = 34, which is
not divisible by 9.
Ex. 60732 is divisible by 9, since sum of digits * (6 + 0 + 7 + 3 + 2) = 18, which is
divisible by 9.
But, 68956 is not divisible by 9, since sum of digits = (6 + 8 + 9 + 5 + 6) = 34, which is
not divisible by 9.
8. Divisibility By 10 : A number is divisible by 10, if it ends with 0.
Ex. 96410, 10480 are divisible by 10, while 96375 is not.
Ex. 96410, 10480 are divisible by 10, while 96375 is not.
9. Divisibility By 11 : A number is divisible by 11, if the difference of the sum of its
digits at odd places and the sum of its digits at even places, is either 0 or a number
divisible by 11.
Ex. The number 4832718 is divisible by 11, since :
(sum of digits at odd places) – (sum of digits at even places)
- (8 + 7 + 3 + 4) – (1 + 2 + 8 ) = 11, which is divisible by 11.
digits at odd places and the sum of its digits at even places, is either 0 or a number
divisible by 11.
Ex. The number 4832718 is divisible by 11, since :
(sum of digits at odd places) – (sum of digits at even places)
- (8 + 7 + 3 + 4) – (1 + 2 + 8 ) = 11, which is divisible by 11.
10. Divisibility By 12: A number is divisible by 12, if it is divisible by both 4 and
3.
Ex. Consider the number 34632.
(i) The number formed by last two digits is 32, which is divisible by 4,
(ii) Sum of digits = (3 + 4 + 6 + 3 + 2) = 18, which is divisible by 3. Thus, 34632 is
divisible by 4 as well as 3. Hence, 34632 is divisible by 12.
3.
Ex. Consider the number 34632.
(i) The number formed by last two digits is 32, which is divisible by 4,
(ii) Sum of digits = (3 + 4 + 6 + 3 + 2) = 18, which is divisible by 3. Thus, 34632 is
divisible by 4 as well as 3. Hence, 34632 is divisible by 12.
11. Divisibility By 14 : A number is divisible by 14, if it is divisible by 2 as well as 7.
12. Divisibility By 15 : A number is divisible by 15, if it is divisible by both 3 and 5.
13. Divisibility By 16 : A number is divisible by 16, if the number formed by the last4
digits is divisible by 16.
Ex.7957536 is divisible by 16, since the number formed by the last four digits is 7536,
which is divisible by 16.
digits is divisible by 16.
Ex.7957536 is divisible by 16, since the number formed by the last four digits is 7536,
which is divisible by 16.
14. Divisibility By 24 : A given number is divisible by 24, if it is divisible by both 3 and
8.
8.
15. Divisibility By 40 : A given number is divisible by 40, if it is divisible by both
5 and 8.
5 and 8.
16. Divisibility By 80 : A given number is divisible by 80, if it is divisible by both 5 and
16.
16.
Note : If a number is divisible by p as well as q, where p and q are co-primes, then the
given number is divisible by pq.
given number is divisible by pq.
If p arid q are not co-primes, then the given number need not be divisible by pq,
even when it is divisible by both p and q.
Ex. 36 is divisible by both 4 and 6, but it is not divisible by (4×6) = 24, since
4 and 6 are not co-primes.
even when it is divisible by both p and q.
Ex. 36 is divisible by both 4 and 6, but it is not divisible by (4×6) = 24, since
4 and 6 are not co-primes.